
Large Language Models (LLMs) like ChatGPT, the new “Sydney” mode in Bing

(which still exists apparently), and Google’s Bard have completely taken over t

news cycles. I’ll leave the speculation on whose jobs these are going to steal fo

other publications; this post is going to dive into how these models actually wo

from where they get their data to the math (well, the basics you need to know)

that allows them to generate such weirdly “real” text.

LLMs are a type of Machine Learning model like any other. So to understand h

they work, we need to �rst understand how ML works in general. Disclaimer:

there are some incredible visual resources on the web that explain how Machi

Learning works in more depth, and probably better than me – I’d highly

recommend checking them out! This section will give you the basics in

Technically style.

The simplest way to understand basic ML models is through prediction: given

what I already know, what’s going to happen in a new, unknown situation? Th

is pretty much how your brain works. Imagine you’ve got a friend who is

constantly late. You’ve got a party coming up, so your expectation is that he’s

going to, shocker, be late again. You don’t know that for sure, but given that he

has always been late, you �gure there’s a good chance he will be this time. And

he shows up on time, you’re surprised, and you keep that new information in t

back of your head; maybe next time you’ll adjust your expectations on the cha

of him being late.

Your brain has millions of these models working all the time, but their actual

internal mechanics are beyond our scienti�c understanding for now. So in the

real world, we need to settle for algorithms – some crude, and some highly

complex – that learn from data and extrapolate what’s going to happen in

Machine learning 101, a crash course

https://technically.substack.com/p/technically-dispatch-chatgpt-and

unknown situations. Models are usually trained to work for speci�c domains

(predicting stock prices, or generating an image) but increasingly they’re

becoming more general purpose.

Logistically, a Machine Learning model is sort of like an API: it takes in some

inputs, and you teach it to give you some outputs. Here’s how it works:

1. Gather training data – you gather a bunch of data about whatever you’re

trying to model

2. Analyze training data – you analyze that data to �nd patterns and nuance

3. Pick a model – you pick an algorithm (or a few) to learn that data and how

works

4. Training – you run the algorithm, it learns, and stores what it has learned

5. Inference – you show new data to the model, and it spits out what it think

You design the model’s interface – what kind of data it takes, and what kind o

data it returns – to match whatever your task is.

https://technically.substack.com/p/whats-an-api
https://substackcdn.com/image/fetch/f_auto,q_auto:good,fl_progressive:steep/https%3A%2F%2Fsubstack-post-media.s3.amazonaws.com%2Fpublic%2Fimages%2Fed40ac03-fd17-4c06-bcbf-1d75f2d6513b_1600x1043.jpeg

So what is the algorithm actually doing? Basically, it’s a really good analyst. It’

�nding the relationships between the data that you give it, which are often too

subtle and complex for you to �gure out manually. The data usually has some

sort of X – characteristics, settings, details – and a Y – what ended up

happening. If you’re looking at this data:

https://substackcdn.com/image/fetch/f_auto,q_auto:good,fl_progressive:steep/https%3A%2F%2Fsubstack-post-media.s3.amazonaws.com%2Fpublic%2Fimages%2Fed40ac03-fd17-4c06-bcbf-1d75f2d6513b_1600x1043.jpeg
https://substackcdn.com/image/fetch/f_auto,q_auto:good,fl_progressive:steep/https%3A%2F%2Fsubstack-post-media.s3.amazonaws.com%2Fpublic%2Fimages%2Fd6832035-32c7-49cb-8960-f2bc9cc427be_572x380.jpeg

You don’t need ML to tell you that when X is 15, Y will be somewhere around

150,000. But what happens when there are 30 different X parameters? Or when

the data is shaped all strange? Or when you’re dealing with text? ML is

fundamentally about modeling complex domains with complex data, where

human manual ability falls sadly short. That’s really all it is.

That’s why ML algorithms can be as simple as linear regression – which you

may have learned about in Statistics 101 – or as complex as a neural network

with millions of nodes. The kinds of models that have made headlines recentl

are mind bogglingly complex, and took the work of hundreds of people (not to

mention decades of collective research). But you’ll often �nd Data Scientists at

companies using pretty simple algorithms, and getting good results.

🔍 Deeper Look🔍

Creating powerful ML models from scratch as an incredibly specialized

discipline. While many Data Scientists and ML Engineers indeed do that wi

frameworks like PyTorch and Tensor�ow, others build on top of existing op

source models and extend their functionality. And you can even outsource t

entire model development process, and use someone else’s right out of the b

Model development is iterative: unless your data is super simple, you’ll likely

need to try different algorithms, and tweak them constantly before your mode

begins to make any sense. This is part science and math, part art, and part pla

randomness.

When your data has a time component to it – say you want to predict stock

prices in the future, or understand what’s going to happen in an upcoming

election – it’s pretty easy to understand what a model is doing. It’s using the p

Language models and generating text

https://www.youtube.com/watch?v=7ArmBVF2dCs
https://pytorch.org/
https://www.tensorflow.org/

to predict the future. But many ML models don’t work with time series data at

language models are a great example of that.

Language models are just ML models that work with text data. You train them

what’s called a corpus (or just body) of text, and then use them for any number

different things, like:

Answering questions

Searching

Summarizing

Transcription

The concept of the language model has been around for ages, but deep learnin

with neural networks has been making a big wave recently; we’ll cover both.

Statistically speaking, a probabilistic language model is just a probability

distribution over words, or groups of words. In English, that means that it look

at a body of text, and dives deep into what words appear, when they appear, ho

often they appear, what sequence they appear in, and things like that. All of th

information gets represented statistically.

Let’s create a quick language model ourselves. Here’s two sentences that may

may not represent my actual opinion:

“The best Manhattan cocktail speci�cation uses two ounces of Van Brunt

Empire Rye, one ounce of Cocchi Di Torino Sweet Vermouth, one dash of

Angostura Bitters, and one dash of Orange Bitters. I stir it in a mixing glass

about 60 turns, pour into a chilled Nick and Nora glass, and serve garnished

with a Maraschino cherry.”

Probabilistic language models

To build a basic probabilistic language model, we’ll gather n-grams, which is a

fancy statistics word for groups of words. Let’s say n=1, so we’re just going to

count how often words appear:

And if n=2:

You can try this yourself, or use a calculator like the one here. What the model

does is create tons and tons of n-grams, even taking into account which words

appear next to each other and in which direction.

😰 Don’t sweat the details 😰

I like going through the n-gram exercise just to illustrate that what many

models are doing under the hood is really not that complicated (for others, i

very complicated). So don’t worry if you didn’t catch all of the above.

https://www.reuneker.nl/files/ngram/
https://substackcdn.com/image/fetch/f_auto,q_auto:good,fl_progressive:steep/https%3A%2F%2Fsubstack-post-media.s3.amazonaws.com%2Fpublic%2Fimages%2F5aa4e55d-1a68-4e55-9b63-7b68dfa8afcd_754x402.png
https://substackcdn.com/image/fetch/f_auto,q_auto:good,fl_progressive:steep/https%3A%2F%2Fsubstack-post-media.s3.amazonaws.com%2Fpublic%2Fimages%2F41044858-a9c2-4c9f-a094-67e677d5c92c_726x314.png

With that information stored, you then predict which words might appear nex

If we wanted to generate a new sentence based on our two cocktail sentences,

we would combine words in a way that looks like the previous ones.

Probabilistic language models have been around for decades. Recently though

has become a lot more popular to use neural networks – a much more comple

algorithm – for language models. These networks are able to learn what’s goin

on in a much more meaningful way, using something called embeddings. It’s

hard for models to learn from words, but it’s a lot easier for them to learn from

mathematical representations of those words.

Embeddings are a way of taking data with tons of dimensions – like giant bod

of text, with tons and tons of discrete words and word combinations – and

representing them mathematically with way less data, without losing much

�delity. It’s very hard for an ML model to work with the text from 100 different

1,500 word blog posts about cocktail making – that’s 150K words! But if we can

distill that information into a bunch of numbers, then we’re cooking with gas.

Armed with a more ergonomic representation of words and text, neural netwo

can learn all sorts of important stuff about text, like:

Semantic relationships between words

Bringing in more context (sentences before and after a word, or sentence)

Figuring out which words are important and which aren’t

This stuff gets really, really complex. But the goal is pretty simple: a model tha

powerful enough to take a lot of context into account when guessing the next

word, sentence, or paragraph. Just like our brains do.

Neural networks and language models

Large Language Models, circa 2023

https://towardsdatascience.com/neural-network-embeddings-explained-4d028e6f0526

ChatGPT and its cousins are basically really, really big language models (henc

the moniker). They’re built on layers and layers of advancements from the pas

decade, including:

Word2Vec models

LSTM (long short term memory) models

RNN (recurrent neural networks)

Transformers (yes) (also known as “foundation models”)

You don’t really need to know what any of these are. What’s important is to

realize that these LLMs are not some surprise scienti�c breakthrough.

Researchers have been inching towards today’s reality slowly but surely for

years and years, and each new development played a critical role in getting us

here. There was a huge hype cycle when LSTMs made headway in 2019

(although the concept was originally introduced in the 90s). And the same for

of these. Research is weird!

⛓ Related Concepts ⛓

I want to stress that a major reason LLMs are perceived as a major advance

not only because of the models themselves, but also because of how they’re

distributed. OpenAI built a chat interface for ChatGPT, and opened it to the

public. Anyone can use it! This was never really the case before this wave o

models. And when anyone can use it, anyone can talk about it.

The way that ChatGPT and LLMs generate these entire paragraphs of text is by

playing the word guessing game, over and over and over again. Here’s how it

works:

1. You give the model a prompt (this is the “predict” phrase”)

2. It predicts a word based on the prompt

https://builtin.com/machine-learning/nlp-word2vec-python
https://intellipaat.com/blog/what-is-lstm/#:~:text='%20LSTM%20stands%20for%20long%20short,especially%20in%20sequence%20prediction%20problems.
https://www.ibm.com/topics/recurrent-neural-networks
https://builtin.com/artificial-intelligence/transformer-neural-network
https://technically.substack.com/p/technically-dispatch-chatgpt-and
https://technically.substack.com/p/technically-dispatch-chatgpt-and

3. It predicts a 2nd word based on the 1st word

4. It predicts a 3rd word based on the �rst 2 words

5. …

It’s really very primitive when you get down to it. But it turns out that the word

guessing game can be very powerful when your model is trained on all of the

text on the entire fucking internet. Data Scientists have long said (about ML

models) that “garbage in means garbage out” – in other words, your models ar

only as good as the data you’ve used to train them. With OpenAI’s partnership

with Microsoft, they’ve been able to dedicate tremendous amounts of computin

resources towards gathering this data and training these models on powerful

servers.

With the entire written internet as context, LLMs can produce sentences that

rarely deviate from something “normal” in a way that older models could rarel

do. If the phrase “I Angostura my cocktail with Manhattan ice around glass

twist” never appears anywhere on the web, the model is probably not going to

generate it. And this simple truth is a big piece of why these models are so goo

https://blogs.microsoft.com/blog/2023/01/23/microsoftandopenaiextendpartnership/
https://blogs.microsoft.com/blog/2023/01/23/microsoftandopenaiextendpartnership/
https://substackcdn.com/image/fetch/f_auto,q_auto:good,fl_progressive:steep/https%3A%2F%2Fsubstack-post-media.s3.amazonaws.com%2Fpublic%2Fimages%2F2aa5356f-d6ca-4718-b8ed-5829ccae688e_1600x1162.png

ChatGPT sourced this data from cocktail recipes across the web and utilized it

when guessing which words to generate.

All of this begs the important question of whether these LLMs actually

understand the answers they’re giving you. Answering that is part math, part

philosophy, and part semantics (what does “understand” mean?). I like this

Gradient article that explores the question from an interesting perspective.

https://thegradient.pub/othello/
https://thegradient.pub/othello/
https://substackcdn.com/image/fetch/f_auto,q_auto:good,fl_progressive:steep/https%3A%2F%2Fsubstack-post-media.s3.amazonaws.com%2Fpublic%2Fimages%2F2aa5356f-d6ca-4718-b8ed-5829ccae688e_1600x1162.png

